
CHAPTER 20

Network Layer:
Internet Protocol

In the Internet model, the main network protocol is the Internet Protocol (IP). In this
chapter, we first discuss internetworking and issues related to the network layer protocol
in general.

We then discuss the current version of the Internet Protocol, version 4, or IPv4.
This leads us to the next generation of this protocol, or IPv6, which may become the
dominant protocol in the near future.

Finally, we discuss the transition strategies from IPv4 to IPv6. Some readers may
note the absence of IPv5. IPv5 is an experimental protocol, based mostly on the OSI
model that never materialized.

20.1 INTERNETWORKING
The physical and data link layers of a network operate locally. These two layers are
jointly responsible for data delivery on the network from one node to the next, as shown
in Figure 20.1.

This internetwork is made of five networks: four LANs and one WAN. If host A
needs to send a data packet to host D, the packet needs to go first from A to Rl (a switch
or router), then from Rl to R3, and finally from R3 to host D. We say that the data packet
passes through three links. In each link, two physical and two data link layers are involved.

However, there is a big problem here. When data arrive at interface fl of Rl, how
does RI know that interface f3 is the outgoing interface? There is no provision in the
data link (or physical) layer to help Rl make the right decision. The frame does not
carry any routing information either. The frame contains the MAC address of A as the
source and the MAC address of Rl as the destination. For a LAN or a WAN, delivery
means carrying the frame through one link, and not beyond.

Need for Network Layer

To solve the problem of delivery through several links, the network layer (or the inter­
network layer, as it is sometimes called) was designed. The network layer is responsible
for host-to-host delivery and for routing the packets through the routers or switches.
Figure 20.2 shows the same internetwork with a network layer added.
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Figure 20.1 Links between two hosts
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Figure 20.2 Network layer in an internetwork
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Figure 20.3 shows the general idea of the functionality of the network layer at a
source, at a router, and at the destination. The network layer at the source is responsible
for creating a packet from the data coming from another protocol (such as a transport
layer protocol or a routing protocol). The header of the packet contains, among other
information, the logical addresses of the source and destination. The network layer is
responsible for checking its routing table to find the routing information (such as the
outgoing interface of the packet or the physical address of the next node). If the packet
is too large, the packet is fragmented (fragmentation is discussed later in this chapter).
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Figure 20.3 Network layer at the source, router, and destination
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The network layer at the switch or router is responsible for routing the packet.
When a packet arrives, the router or switch consults its routing table and finds the inter­
face from which the packet must be sent. The packet, after some changes in the header,
with the routing infonnation is passed to the data link layer again.

• The network layer at the destination is responsible for address verification; it makes
sure that the destination address on the packet is the same as the address of the host. If
the packet is a fragment, the network layer waits until all fragments have arrived, and
then reassembles them and delivers the reassembled packet to the transport layer.

Internet as a Datagram Network

The Internet, at the network layer, is a packet-switched network. We discussed switching
in Chapter 8. We said that, in general, switching can be divided into three broad catego­
ries: circuit switching, packet switching, and message switching. Packet switching uses
either the virtual circuit approach or the datagram approach.

The Internet has chosen the datagram approach to switching in the network layer.
It uses the universal addresses defined in the network layer to route packets from the
source to the destination.

Switching at the network layer in the Internet uses the datagram approach to packet switching.
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Internet as a Connectionless Network
Delivery of a packet can be accomplished by using either a connection-oriented or a
connectionless network service. In a connection-oriented service, the source first
makes a connection with the destination before sending a packet. When the connection
is established, a sequence of packets from the same source to the same destination can
be sent one after another. In this case, there is a relationship between packets. They are
sent on the same path in sequential order. A packet is logically connected to the packet
traveling before it and to the packet traveling after it. When all packets of a message
have been delivered, the connection is terminated.

In a connection-oriented protocol, the decision about the route of a sequence of
packets with the same source and destination addresses can be made only once, when
the connection is established. Switches do not recalculate the route for each individual
packet. This type of service is used in a virtual-circuit approacH. to packet switching
such as in Frame Relay and ATM.

In conneetionless service, the network layer protocol treats each packet indepen­
dently, with each packet having no relationship to any other packet. The packets in a
message mayor may not travel the same path to their destination. This type of service
is used in the datagram approach to packet switching. The Internet has chosen this type
of service at the network layer.

The reason for this decision is that the Internet is made of so many heterogeneous
networks that it is almost impossible to create a connection from the source to the
destination without knowing the nature of the networks in advance.

Communication at the network layer in the Internet is connectionless.

20.2 IPv4
The Internet Protocol version 4 (IPv4) is the delivery mechanism used by the TCP/IP
protocols. Figure 20.4 shows the position of IPv4 in the suite.

Figure 20.4 Position ofIPv4 in TCPIIP protocol suite
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IPv4 is an unreliable and connectionless datagram protocol-a best-effort delivery
service. The term best-effort means that IPv4 provides no error control or flow control
(except for error detection on the header). IPv4 assumes the unreliability of the under­
lying layers and does its best to get a transmission through to its destination, but with
no guarantees.

If reliability is important, IPv4 must be paired with a reliable protocol such as TCP.
An example of a more commonly understood best-effort delivery service is the post
office. The post office does its best to deliver the mail but does not always succeed. If
an unregistered letter is lost, it is up to the sender or would-be recipient to discover the
loss and rectify the problem. The post office itself does not keep track of every letter
and cannot notify a sender of loss or damage.

IPv4 is also a connectionless protocol for a packet-switching network that uses the
datagram approach (see Chapter 8). This means that each datagram is handled indepen­
dently, and each datagram can follow a different route to the destination. This implies
that datagrams sent by the same source to the same destination could arrive out of
order. Also, some could be lost or corrupted during transmission. Again, IPv4 relies on
a higher-level protocol to take care of all these problems.

Datagram

Packets in the IPv4 layer are called datagrams. Figure 20.5 shows the IPv4 datagram
format.

Figure 20.5 IPv4 datagramfannat
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A datagram is a variable-length packet consisting of two parts: header and data.
The header is 20 to 60 bytes in length and contains information essential to routing and
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delivery. It is customary in TCP/IP to show the header in 4-byte sections. A brief
description of each field is in order.

o Version (VER). This 4-bit field defines the version of the IPv4 protocol. Currently
the version is 4. However, version 6 (or IPng) may totally replace version 4 in the
future. This field tells the IPv4 software running in the processing machine that the
datagram has the format of version 4. All fields must be interpreted as specified
in the fourth version of the protocol. If the machine is using some other version of
IPv4, the datagram is discarded rather than interpreted incorrectly.

o Header length (HLEN). This 4-bit field defines the total length of the datagram
header in 4-byte words. This field is needed because the length of the header
is variable (between 20 and 60 bytes). When there are no options, the header length
is 20 bytes, and the value of this field is 5 (5 x 4 = 20). When the option field is
at its maximum size, the value of this field is 15 (15 x 4 = 60).

o Services. IETF has changed the interpretation and name of this 8-bit field. This
field, previously called service type, is now called differentiated services. We show
both interpretations in Figure 20.6.

Figure 20.6 Service type or differentiated services
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1. Service Type
In this interpretation, the first 3 bits are called precedence bits. The next 4 bits are
called type of service (TOS) bits, and the last bit is not used.

a. Precedence is a 3-bit subfield ranging from 0 (000 in binary) to 7 (111 in binary).
The precedence defines the priority of the datagram in issues such as congestion.
If a router is congested and needs to discard some datagrams, those datagrams
with lowest precedence are discarded first. Some datagrams in the Internet are
more important than others. For example, a datagram used for network manage­
ment is much more urgent and important than a datagram containing optional
information for a group.

The precedence subfield was part of version 4, but never used.

b. TOS bits is a 4-bit subfield with each bit having a special meaning. Although a
bit can be either 0 or 1, one and only one of the bits can have the value of 1 in
each datagram. The bit patterns and their interpretations are given in Table 20.1.
With only 1 bit set at a time, we can have five different types of services.
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Table 20.1 Types of service

TOS Bits Description

0000 Normal (default)

0001 Minimize cost

0010 Maximize reliability

0100 Maximize throughput

1000 Minimize delay

Application programs can request a specific type of service. The defaults for some
applications are shown in Table 20.2.

Table 20.2 Default types ofservice

Protocol TOS Bits Description

ICMP 0000 Normal

BOOTP 0000 Normal

NNTP 0001 Minimize cost

IGP 0010 Maximize reliability

SNMP 0010 Maximize reliability

TELNET 1000 Minimize delay

FTP (data) 0100 Maximize throughput

FTP (control) 1000 Minimize delay

TFTP 1000 Minimize delay

SMTP (command) 1000 Minimize delay

SMTP (data) 0100 Maximize throughput

DNS (UDP query) 1000 Minimize delay

DNS (TCP query) 0000 Normal

DNS (zone) 0100 Maximize throughput

It is clear from Table 20.2 that interactive activities, activities requiring immediate
attention, and activities requiring immediate response need minimum delay. Those
activities that send bulk data require maximum throughput. Management activities
need maximum reliability. Background activities need minimum cost.

2. Differentiated Services
In this interpretation, the first 6 bits make up the codepoint subfield, and the last 2 bits
are not used. The codepoint subfield can be used in two different ways.

a. When the 3 rightmost bits are Os, the 3 leftmost bits are interpreted the same as the
precedence bits in the service type interpretation. In other words, it is compatible
with the old interpretation.
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b. When the 3 rightmost bits are not all Os, the 6 bits define 64 services based on the
priority assignment by the Internet or local authorities according to Table 20.3. The
first category contains 32 service types; the second and the third each contain 16.
The first category (numbers 0, 2,4, ... ,62) is assigned by the Internet authorities
(IETF). The second category (3, 7, 11, 15, , 63) can be used by local authorities
(organizations). The third category (1, 5, 9, ,61) is temporary and can be used
for experimental purposes. Note that the numbers are not contiguous. If they were,
the first category would range from 0 to 31, the second from 32 to 47, and the third
from 48 to 63. This would be incompatible with the TOS interpretation because
XXXOOO (which includes 0, 8, 16, 24, 32, 40, 48, and 56) would fall into all
three categories. Instead, in this assignment method all these services belong to
category 1. Note that these assignments have not yet been finalized.

Table 20.3 Values for codepoints

Category Codepoint Assigning Authority

1 XXXXXO Internet

2 XXXXll Local

3 XXXXOI Temporary or experimental

o Total length. This is a In-bit field that defines the total length (header plus data)
of the IPv4 datagram in bytes. To find the length of the data coming from the upper
layer, subtract the header length from the total length. The header length can be
found by multiplying the value in the HLEN field by 4.

Length of data =total length - header length

Since the field length is 16 bits, the total length of the IPv4 datagram is limited to
65,535 (216 - 1) bytes, of which 20 to 60 bytes are the header and the rest is data
from the upper layer.

The total length field defines the total length of the datagram including the header.

Though a size of 65,535 bytes might seem large, the size of the IPv4 datagram
may increase in the near future as the underlying technologies allow even more
throughput (greater bandwidth).

When we discuss fragmentation in the next section, we will see that some phys­
ical networks are not able to encapsulate a datagram of 65,535 bytes in their frames.
The datagram must be fragmented to be able to pass through those networks.

One may ask why we need this field anyway. When a machine (router or host)
receives a frame, it drops the header and the trailer, leaving the datagram. Why
include an extra field that is not needed? The answer is that in many cases we
really do not need the value in this field. However, there are occasions in which the
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datagram is not the only thing encapsulated in a frame; it may be that padding has
been added. For example, the Ethernet protocol has a minimum and maximum
restriction on the size of data that can be encapsulated in a frame (46 to 1500 bytes).
If the size of an IPv4 datagram is less than 46 bytes, some padding will be added to
meet this requirement. In this case, when a machine decapsulates the datagram, it
needs to check the total length field to determine how much is really data and how
much is padding (see Figure 20.7).

Figure 20.7 Encapsulation ofa small datagram in an Ethernet frame
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Length: Minimum 46 bytes

Data < 46 bytes II Padding

,I
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Trailer

o Identification. This field is used in fragmentation (discussed in the next section).

o Flags. This field is used in fragmentation (discussed in the next section).

o Fragmentation offset. This field is used in fragmentation (discussed in the next
section).

o Time to live. A datagram has a limited lifetime in its travel through an internet.
This field was originally designed to hold a timestamp, which was decremented by
each visited router. The datagram was discarded when the value became zero. How­
ever, for this scheme, all the machines must have synchronized clocks and must
know how long it takes for a datagram to go from one machine to another. Today,
this field is used mostly to control the maximum number of hops (routers) visited by
the datagram. When a source host sends the datagram, it stores a number in this
field. This value is approximately 2 times the maximum number of routes between
any two hosts. Each router that processes the datagram decrements this number by 1.
If this value, after being decremented, is zero, the router discards the datagram.

This field is needed because routing tables in the Internet can become corrupted.
A datagram may travel between two or more routers for a long time without ever get­
ting delivered to the destination host. This field limits the lifetime of a datagram.

Another use of this field is to intentionally limit the journey of the packet. For
example, if the source wants to confine the packet to the local network, it can store
1 in this field. When the packet arrives at the first router, this value is decremented
to 0, and the datagram is discarded.

o Protocol. This 8-bit field defines the higher-level protocol that uses the services of
the IPv4 layer. An IPv4 datagram can encapsulate data from several higher-level
protocols such as TCP, UDP, ICMP, and IGMP. This field specifies the final desti­
nation protocol to which the IPv4 datagram is delivered. In other words, since the
IPv4 protocol carries data from different other protocols, the value of this field
helps the receiving network layer know to which protocol the data belong (see
Figure 20.8).
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Figure 20.8 Protocol field and encapsulated data
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The value of this field for each higher-level protocol is shown in Table 10.4.

Table 20.4 Protocol values

Value Protocol

1 ICMP

2 IGMP

6 TCP

17 UDP

89 OSPF

o Checksum. The checksum concept and its calculation are discussed later in this
chapter.

o Source address. This 32-bit field defines the IPv4 address of the source. This field
must remain unchanged during the time the IPv4 datagram travels from the source
host to the destination host.

o Destination address. This 32-bit field defines the IPv4 address of the destination.
This field must remain unchanged during the time the IPv4 datagram travels from
the source host to the destination host.

Example 20.1

An IPv4 packet has arrived with the first 8 bits as shown:

01000010

The receiver discards the packet. Why?

Solution
There is an elTOr in this packet. The 4 leftmost bits (0100) show the version, which is correct. The
next 4 bits (0010) show an invalid header length (2 x 4 =8). The minimum number of bytes in the
header must be 20. The packet has been corrupted in transmission.
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Example 20.2

In an IPv4 packet, the value of HLEN is 1000 in binary. How many bytes of options are being
carried by this packet?

Solution
The HLEN value is 8, which means the total number of bytes in the header is 8 x 4, or 32 bytes.
The first 20 bytes are the base header, the next 12 bytes are the options.

Example 20.3

In an IPv4 packet, the value of HLEN is 5, and the value of the total length field is Ox0028. How
many bytes of data are being carried by this packet?

Solution
The HLEN value is 5, which means the total number of bytes in the header is 5 x 4, or 20 bytes (no
options). The total length is 40 bytes, which means the packet is carrying 20 bytes of data (40- 20).

Example 20.4

An IPv4 packet has arrived with the first few hexadecimal digits as shown.

Ox45000028000100000102 ...

How many hops can this packet travel before being dropped? The data belong to what upper-layer
protocol?

Solution
To find the time-to-live field, we skip 8 bytes (16 hexadecimal digits). The time-to-live field is the
ninth byte, which is 01. This means the packet can travel only one hop. The protocol field is the
next byte (02), which means that the upper-layer protocol is IGMP (see Table 20.4).

Fragmentation
A datagram can travel through different networks. Each router decapsulates the IPv4
datagram from the frame it receives, processes it, and then encapsulates it in another
frame. The format and size of the received frame depend on the protocol used by the
physical network through which the frame has just traveled. The format and size of
the sent frame depend on the protocol used by the physical network through which the
frame is going to travel. For example, if a router connects a LAN to a WAN, it receives
a frame in the LAN format and sends a frame in the WAN format.

Maximum Transfer Unit (MTU)

Each data link layer protocol has its own frame format in most protocols. One of the
fields defined in the format is the maximum size of the data field. In other words, when
a datagram is encapsulated in a frame, the total size of the datagram must be less than
this maximum size, which is defined by the restrictions imposed by the hardware and
software used in the network (see Figure 20.9).

The value of the MTU depends on the physical network protocol. Table 20.5 shows
the values for some protocols.
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Figure 20.9 Maximum transfer unit (MTU)
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Table 20.5 MTUs for some networks

Protocol MTU

Hyperchannel 65,535

Token Ring (16 Mbps) 17,914

Token Ring (4 Mbps) 4,464

FDDI 4,352

Ethernet 1,500

X.25 576

PPP 296

To make the IPv4 protocol independent of the physical network, the designers
decided to make the maximum length of the IPv4 datagram equal to 65,535 bytes. This
makes transmission more efficient if we use a protocol with an MTU of this size. How­
ever, for other physical networks, we must divide the datagram to make it possible to
pass through these networks. This is called fragmentation.

The source usually does not fragment the IPv4 packet. The transport layer will
instead segment the data into a size that can be accommodated by IPv4 and the data
link layer in use.

When a datagram is fragmented, each fragment has its own header with most of
the fields repeated, but with some changed. A fragmented datagram may itself be frag­
mented if it encounters a network with an even smaller MTU. In other words, a data­
gram can be fragmented several times before it reaches the final destination.

In IPv4, a datagram can be fragmented by the source host or any router in the path
although there is a tendency to limit fragmentation only at the source. The reassembly of
the datagram, however, is done only by the destination host because each fragment
becomes an independent datagram. Whereas the fragmented datagram can travel through
different routes, and we can never control or guarantee which route a fragmented data­
gram may take, all the fragments belonging to the same datagram should finally arrive at
the destination host. So it is logical to do the reassembly at the final destination. An even
stronger objection to reassembling packets during the transmission is the loss of effi­
ciency it incurs.

When a datagram is fragmented, required parts of the header must be copied by all
fragments. The option field mayor may not be copied, as we will see in the next section.
The host or router that fragments a datagram must change the values of three fields:
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flags, fragmentation offset, and total length. The rest of the fields must be copied. Of
course, the value of the checksum must be recalculated regardless of fragmentation.

Fields Related to Fragmentation

The fields that are related to fragmentation and reassembly of an IPv4 datagram are the
identification, flags, and fragmentation offset fields.

o Identification. This 16-bit field identifies a datagram originating from the source
host. The combination of the identification and source IPv4 address must uniquely
define a datagram as it leaves the source host. To guarantee uniqueness, the IPv4
protocol uses a counter to label the datagrams. The counter is initialized to a posi­
tive number. When the IPv4 protocol sends a datagram, it copies the current value
of the counter to the identification field and increments the counter by'~1. As long as
the counter is kept in the main memory, uniqueness is guaranteed. When a data­
gram is fragmented, the value in the identification field is copied to all fragments.
In other words, all fragments have the same identification number, the same as the
original datagram. The identification number helps the destination in reassembling
the datagram. It knows that all fragments having the same identification value must
be assembled into one datagram.

o Flags. This is a 3-bit field. The first bit is reserved. The second bit is called the do
notfragment bit. If its value is 1, the machine must not fragment the datagram. If it
cannot pass the datagram through any available physical network, it discards the
datagram and sends an ICMP error message to the source host (see Chapter 21). If
its value is 0, the datagram can be fragmented if necessary. The third bit is called
the more fragment bit. If its value is 1, it means the datagram is not the last frag­
ment; there are more fragments after this one. If its value is 0, it means this is the
last or only fragment (see Figure 20.10).

Figure 20.10 Flags used in fragmentation

~ D: Donat fragment
~ M: More fragments

o Fragmentation offset. This 13-bit field shows the relative position of this frag­
ment with respect to the whole datagram. It is the offset of the data in the original
datagram measured in units of 8 bytes. Figure 20.11 shows a datagram with a data
size of 4000 bytes fragmented into three fragments.

The bytes in the original datagram are numbered 0 to 3999. The first fragment
carries bytes 0 to 1399. The offset for this datagram is 0/8 = O. The second frag­
ment carries bytes 1400 to 2799; the offset value for this fragment is 1400/8 = 175.
Finally, the third fragment carries bytes 2800 to 3999. The offset value for this
fragment is 2800/8 =350.

Remember that the value of the offset is measured in units of 8 bytes. This is
done because the length of the offset field is only 13 bits and cannot represent a
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Figure 20.11 Fragmentation example

Byte 0000

Offset = 0000/8 = 0

•••

Offset = 0000/8 = 0

Offset =1400/8 =175

Offset = 2800/8 = 350

2800 3999

sequence of bytes greater than 8191. This forces hosts or routers that fragment data­
grams to choose a fragment size so that the first byte number is divisible by 8.

Figure 20.12 shows an expanded view of the fragments in Figure 20.11.
Notice the value of the identification field is the same in all fragments. Notice the
value of the flags field with the more bit set for all fragments except the last. Also,
the value of the offset field for each fragment is shown.

Figure 20.12 Detailedfragmentation example

I I 1420
14,567 I 111 000

I

Bytes 0000-1399 I I 820
14,567 I 111 175

Fragment 1 I

I I 4020

1/14,567 I 101 000 I I 1420 Bytes 1400-2199
I 14,567 I III 175

I Fragment 2.1

~ I I 620

Bytes 0000-3999 Bytes 1400-2799
14,567 I III 275

I
Fragment 2

Original datagram

I I 1220
Bytes 2200-2799

14,567 I 101' 350 Fragment 2.2
I

Bytes 2800-3999

Fragment 3



SECTION 20.2 IPv4 593

The figure also shows what happens if a fragment itself is fragmented. In this
case the value of the offset field is always relative to the original datagram. For
example, in the figure, the second fragment is itself fragmented later to two frag­
ments of 800 bytes and 600 bytes, but the offset shows the relative position of the
fragments to the original data.

It is obvious that even if each fragment follows a different path and arrives out
of order, the final destination host can reassemble the original datagram from the
fragments received (if none of them is lost) by using the following strategy:

1. The first fragment has an offset field value of zero.

2. Divide the length of the first fragment by 8. The second fragment has an offset
value equal to that result.

3. Divide the total length of the first and second fragments by 8. The third fragment
has an offset value equal to that result.

4. Continue the process. The last fragment has a more bit value of O.

Example 20.5

A packet has arrived with an M bit value of O. Is this the first fragment, the last fragment, or a
middle fragment? Do we know if the packet was fragmented?

Solution
If the M bit is 0, it means that there are no more fragments; the fragment is the last one. However,
we cannot say if the original packet was fragmented or not. A nonfragmented packet is consid­
ered the last fragment.

Example 20.6

A packet has arrived with an M bit value of 1. Is this the first fragment, the last fragment, or a
middle fragment? Do we know if the packet was fragmented?

Solution
If the M bit is 1, it means that there is at least one more fragment. This fragment can be the first
one or a middle one, but not the last one. We don't know if it is the first one or a middle one; we
need more information (the value of the fragmentation offset). See Example 20.7.

Example 20.7

A packet has arrived with an M bit value of 1 and a fragmentation offset value of O. Is this the first
fragment, the last fragment, Or a middle fragment?

Solution
Because the M bit is l, it is either the first fragment or a middle one. Because the offset value is 0,
it is the first fragment.

Example 20.8

A packet has arrived in which the offset value is 100. What is the number of the first byte? Do we
know the number of the last byte?
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Solution
To find the number of the first byte, we multiply the offset value by 8. This means that the first
byte number is 800. We cannot determine the number of the last byte unless we know the length
of the data.

Example 20.9

A packet has arrived in which the offset value is 100, the value of HLEN is 5, and the value of the
tota1length field is 100. What are the numbers of the first byte and the last byte?

Solution
The first byte number is 100 x 8 = 800. The total length is 100 bytes, and the header length is
20 bytes (5 x 4), which means that there are 80 bytes in this datagram. If the first byte number
is 800, the last byte number must be 879.

Checksum

We discussed the general idea behind the checksum and how it is calculated in Chapter 10.
The implementation of the checksum in the IPv4 packet follows the same principles. First,
the value of the checksum field is set to O. Then the entire header is divided into 16-bit
sections and added together. The result (sum) is complemented and inserted into the
checksum field.

The checksum in the IPv4 packet covers only the header, not the data. There are two
good reasons for this. First, all higher-level protocols that encapsulate data in the IPv4
datagram have a checksum field that covers the whole packet. Therefore, the checksum
for the IPv4 datagram does not have to check the encapsulated data. Second, the header
of the IPv4 packet changes with each visited router, but the data do not. So the checksum
includes only the part that has changed. If the data were included, each router must recal­
culate the checksum for the whole packet, which means an increase in processing time.

Example 20.10

Figure 20.13 shows an example of a checksum calculation for an IPv4 header without options.
The header is divided into 16-bit sections. All the sections are added and the sum is comple­
mented. The result is inserted in the checksum field.

Options

The header of the IPv4 datagram is made of two parts: a fixed palt and a variable part.
The fixed part is 20 bytes long and was discussed in the previous section. The variable
part comprises the options that can be a maximum of 40 bytes.

Options, as the name implies, are not required for a datagram. They can be used for
network testing and debugging. Although options are not a required part of the IPv4
header, option processing is required of the IPv4 software. This means that all imple­
mentations must be able to handle options if they are present in the header.

The detailed discussion of each option is beyond the scope of this book. We give
the taxonomy of options in Figure 20.14 and briefly explain the purpose of each.

No Operation

A no-operation option is a I-byte option used as a filler between options.
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Figure 20.13 Example of checksum calculation in IPv4
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4,5, and 0 ------+ 4 5 0 0
28 ------+ 0 0 1 C

1 ------+ 0 0 0 1
oand 0 ------+ 0 0 0 0

4 and 17 ------+ 0 4 1 1
0 ------+ 0 0 0 0

10.12 ------+ 0 A 0 C
14.5 ------+ 0 E 0 5
12.6 ------+ 0 C 0 6
7.9 ------+ 0 7 0 9

Sum ------+ 7 4 4 E
Checksum ------+ 8 B B 1

Figure 20.14 Taxonomy ofoptions in IPv4
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An end-of-option option is a I-byte option used for padding at the end of the option
field. It, however, can only be used as the last option.

Record Route

A record route option is used to record the Internet routers that handle the datagram.
It can list up to nine router addresses. It can be used for debugging and management
purposes.

Strict Source Route

A strict source route option is used by the source to predetermine a route for the data­
gram as it travels through the Internet. Dictation of a route by the source can be useful
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for several purposes. The sender can choose a route with a specific type of service, such
as minimum delay or maximum throughput. Alternatively, it may choose a route that is
safer or more reliable for the sender's purpose. For example, a sender can choose a route
so that its datagram does not travel through a competitor's network.

If a datagram specifies a strict source route, all the routers defined in the option
must be visited by the datagram. A router must not be visited if its IPv4 address is not
listed in the datagram. If the datagram visits a router that is not on the list, the datagram
is discarded and an error message is issued. If the datagram arrives at the destination
and some of the entries were not visited, it will also be discarded and an error message
issued.

Loose Source Route

A loose source route option is similar to the strict source route, but it is less rigid. Each
router in the list must be visited, but the datagram can visit other routers as well.

Timestamp

A timestamp option is used to record the time of datagram processing by a router. The
time is expressed in milliseconds from midnight, Universal time or Greenwich mean
time. Knowing the time a datagram is processed can help users and managers track the
behavior of the routers in the Internet. We can estimate the time it takes for a datagram
to go from one ~outer to another. We say estimate because, although all routers may use
Universal time, their local clocks may not be synchronized.

20.3 IPv6
The network layer protocol in the TCPIIP protocol suite is currently IPv4 (Internet­
working Protocol, version 4). IPv4 provides the host-to-host communication between
systems in the Internet. Although IPv4 is well designed, data communication has
evolved since the inception of IPv4 in the 1970s. IPv4 has some deficiencies (listed
below) that make it unsuitable for the fast-growing Internet.

o Despite all short-term solutions, such as subnetting, classless addressing, and NAT,
address depletion is still a long-term problem in the Internet.

o The Internet must accommodate real-time audio and video transmission. This type
of transmission requires minimum delay strategies and reservation of resources not
provided in the IPv4 design.

o The Internet must accommodate encryption and authentication of data for some
applications. No encryption or authentication is provided by IPv4.

To overcome these deficiencies, IPv6 (Internetworking Protocol, version 6), also
known as IPng (Internetworking Protocol, next generation), was proposed and is
now a standard. In IPv6, the Internet protocol was extensively modified to accommo­
date the unforeseen growth of the Internet. The format and the length of the IP address
were changed along with the packet format. Related protocols, such as ICMP, were also
modified. Other protocols in the network layer, such as ARP, RARP, and IGMP, were
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either deleted or included in the ICMPv6 protocol (see Chapter 21). Routing protocols,
such as RIP and OSPF (see Chapter 22), were also slightly modified to accommodate
these changes. Communications experts predict that IPv6 and its related protocols will
soon replace the current IP version. In this section first we discuss IPv6. Then we explore
the strategies used for the transition from version 4 to version 6.

The adoption of IPv6 has been slow. The reason is that the original motivation for
its development, depletion of IPv4 addresses, has been remedied by short-term strategies
such as classless addressing and NAT. However, the fast-spreading use of the Internet,
and new services such as mobile IP, IP telephony, and IP-capable mobile telephony, may
eventually require the total replacement of IPv4 with IPv6.

Advantages
The next-generation IP, or IPv6, has some advantages over IPv4 that can be summarized
as follows:

o Larger address space. An IPv6 address is 128 bits long, as we discussed in Chap­
ter 19. Compared with the 32-bit address of IPv4, this is a huge (296) increase in
the address space.

o Better header format. IPv6 uses a new header format in which options are sepa­
rated from the base header and inserted, when needed, between the base header
and the upper-layer data. This simplifies and speeds up the routing process because
most of the options do not need to be checked by routers.

o New options. IPv6 has new options to allow for additional functionalities.

o Allowance for extension. IPv6 is designed to allow the extension of the protocol if
required by new technologies or applications.

o Support for resource allocation. In IPv6, the type-of-service field has been
removed, but a mechanism (calledjlow label) has been added to enable the source
to request special handling of the packet. This mechanism can be used to support
traffic such as real-time audio and video.

o Support for more security. The encryption and authentication options in IPv6
provide confidentiality and integrity of the packet.

Packet Format
The IPv6 packet is shown in Figure 20.15. Each packet is composed of a mandatory base
header followed by the payload. The payload consists of two parts: optional extension
headers and data from an upper layer. The base header occupies 40 bytes, whereas the
extension headers and data from the upper layer contain up to 65,535 bytes of information.

Base Header

Figure 20.16 shows the base header with its eight fields.
These fields are as follows:

o Version. This 4-bit field defines the version number of the IP. For IPv6, the value is 6.

o Priority. The 4-bit priority field defines the priority of the packet with respect to
traffic congestion. We will discuss this field later.



598 CHAPTER 20 NETWORK LAYER: INTERNET PROTOCOL

Figure 20.15 IPv6 datagram header and payload
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o Flow label. The flow label is a 3-byte (24-bit) field that is designed to provide
special handling for a particular flow of data. We will discuss this field later.

o Payload length. The 2-byte payload length field defines the length of the IP data­
gram excluding the base header.

o Next header. The next header is an 8-bit field defining the header that follows the
base header in the datagram. The next header is either one of the optional exten­
sion headers used by IP or the header of an encapsulated packet such as UDP or
TCP. Each extension header also contains this field. Table 20.6 shows the values of
next headers. Note that this field in version 4 is called the protocol.

o Hop limit. This 8-bit hop limit field serves the same purpose as the TIL field in IPv4.

o Source address. The source address field is a 16-byte (128-bit) Internet address
that identifies the original source of the datagram.
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Table 20.6 Next header codes for IPv6

Code Next Header

0 Hop-by-hop option

2 ICMP

6 TCP

17 UDP

43 Source routing

44 Fragmentation

50 Encrypted security payload

51 Authentication

59 Null (no next header)

60 Destination option

o Destination address. The destination address field is a 16-byte (128-bit) Internet
address that usually identifies the final destination of the datagram. However, if
source routing is used, this field contains the address of the next router.

Priority

The priority field of the IPv6 packet defines the priority of each packet with respect to
other packets from the same source. For example, if one of two consecutive datagrams
must be discarded due to congestion, the datagram with the lower packet priority will
be discarded. IPv6 divides traffic into two broad categories: congestion-controlled and
noncongestion-controlled.

Congestion-Controlled Traffic If a source adapts itself to traffic slowdown when
there is congestion, the traffic is referred to as congestion-controlled traffic. For
example, TCP, which uses the sliding window protocol, can easily respond to traffic. In
congestion-controlled traffic, it is understood that packets may arrive delayed, lost, or
out of order. Congestion-controlled data are assigned priorities from 0 to 7, as listed in
Table 20.7. A priority of 0 is the lowest; a priority of 7 is the highest.

Table 20.7 Priorities for congestion-controlled traffic

Priority Meaning

0 No specific traffic

1 Background data

2 Unattended data traffic

3 Reserved

4 Attended bulk data traffic

5 Reserved

6 Interactive traffic

7 Control traffic
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The priority descriptions are as follows:

o No specific traffic. A priority of 0 is assigned to a packet when the process does
not define a priority.

o Background data. This group (priority 1) defines data that are usually delivered
in the background. Delivery of the news is a good example.

o Unattended data traffic. If the user is not waiting (attending) for the data to be
received, the packet will be given a priority of 2. E-mail belongs to this group. The
recipient of an e-mail does not know when a message has arrived. In addition, an
e-mail is usually stored before it is forwarded. A little bit of delay is of little
consequence.

o Attended bulk data traffic. A protocol that transfers data while the user is waiting
(attending) to receive the data (possibly with delay) is given a priority of 4. FTP
and HTTP belong to this group.

o Interactive traffic. Protocols such as TELNET that need user interaction are
assigned the second-highest priority (6) in this group.

o Control traffic. Control traffic is given the highest priority (7). Routing protocols
such as OSPF and RIP and management protocols such as SNMP have this priority.

Noncongestion-Controlled Traffic This refers to a type of traffic that expects mini­
mum delay. Discarding of packets is not desirable. Retransmission in most cases is
impossible. In other words, the source does not adapt itself to congestion. Real-time
audio and video are examples of this type of traffic.

Priority numbers from 8 to 15 are assigned to noncongestion-controlled traffic.
Although there are not yet any particular standard assignments for this type of data, the
priorities are usually based on how much the quality of received data is affected by the
discarding of packets. Data containing less redundancy (such as low-fidelity audio or
video) can be given a higher priority (15). Data containing more redundancy (such as
high-fidelity audio or video) are given a lower priority (8). See Table 20.8.

Table 20.8 Priorities for noncongestion-controlled traffic

Priority Meaning

8 Data with greatest redundancy

.. . ., .
15 Data with least redundancy

Flow Label

A sequence of packets, sent from a particular source to a particular destination, that needs
special handling by routers is called a flow of packets. The combination of the source
address and the value of the flow label uniquely defines a flow of packets.

To a router, a flow is a sequence of packets that share the same characteristics, such
as traveling the same path, using the same resources, having the same kind of security,
and so on. A router that supports the handling of flow labels has a flow label table. The
table has an entry for each active flow label; each entry defines the services required by
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the corresponding flow label. When the router receives a packet, it consults its flow
label table to find the corresponding entry for the flow label value defined in the packet.
It then provides the packet with the services mentioned in the entry. However, note that
the flow label itself does not provide the information for the entries of the flow label
table; the information is provided by other means such as the hop-by-hop options or
other protocols.

In its simplest form, a flow label can be used to speed up the processing of a packet
by a router. When a router receives a packet, instead of consulting the routing table and
going through a routing algorithm to define the address of the next hop, it can easily
look in a flow label table for the next hop.

In its more sophisticated form, a flow label can be used to support the transmission of
real-time audio and video. Real-time audio or video, particularly in digital form, requires
resources such as high bandwidth, large buffers, long processing time, and so on. A
process can make a reservation for these resources beforehand to guarantee that real-time
data will not be delayed due to a lack of resources. The use of real-time data and the
reservation of these resources require other protocols such as Real-Time Protocol (RTP)
and Resource Reservation Protocol (RSVP) in addition to IPv6.

To allow the effective use of flow labels, three rules have been defined:

1. The flow label is assigned to a packet by the source host. The label is a random
number between 1 and 224 - 1. A source must not reuse a flow label for a new flow
while the existing flow is still active.

2. If a host does not support the flow label, it sets this field to zero. If a router does not
support the flow label, it simply ignores it.

3. All packets belonging to the same flow have the same source, same destination,
same priority, and same options.

Comparison Between IPv4 and IPv6 Headers

Table 20.9 compares IPv4 and IPv6 headers.

Table 20.9 Comparison between IPv4 and IPv6 packet headers

Comparison

1. The header length field is eliminated in IPv6 because the length of the header is fixed in
this version.

2. The service type field is eliminated in IPv6. The priority and flow label fields together take
over the function of the service type field.

3. The total length field is eliminated in IPv6 and replaced by the payload length field.

4. The identification, flag, and offset fields are eliminated from the base header in IPv6. They
are included in the fragmentation extension header.

5. The TTL field is called hop limit in IPv6.

6. The protocol field is replaced by the next header field.

7. The header checksum is eliminated because the checksum is provided by upper-layer
protocols; it is therefore not needed at this level.

8. The option fields in IPv4 are implemented as extension headers in IPv6.
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Extension Headers
The length of the base header is fixed at 40 bytes. However, to give greater functionality
to the IP datagram, the base header can be followed by up to six extension headers.
Many of these headers are options in IPv4. Six types of extension headers have been
defined, as shown in Figure 20.17.

Figure 20.17 Extension header types
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Hop-by-Hop Option

The hop-by-hop option is used when the source needs to pass information to all routers
visited by the datagram. So far, only three options have been defined: Padl, PadN, and
jumbo payload. The Padl option is 1 byte long and is designed for alignment pur­
poses. PadN is similar in concept to Padi. The difference is that PadN is used when 2 or
more bytes is needed for alignment. The jumbo payload option is used to define a pay­
load longer than 65,535 bytes.

Source Routing The source routing extension header combines the concepts of the
strict source route and the loose source route options of IPv4.

Fragmentation

The concept of fragmentation is the same as that in IPv4. However, the place where
fragmentation occurs differs. In IPv4, the source or a router is required to fragment if
the size of the datagram is larger than the MTU of the network over which the datagram
travels. In IPv6, only the original source can fragment. A source must use a path MTU
discovery technique to find the smallest MTU supported by any network on the path.
The source then fragments using this knowledge.

Authentication

The authentication extension header has a dual purpose: it validates the message sender
and ensures the integrity of data. We discuss this extension header when we discuss net­
work security in Chapter 31.
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Encrypted Security Payload

The encrypted security payload (ESP) is an extension that provides confidentiality
and guards against eavesdropping. We discuss this extension header in Chapter 31.

Destination Option The destination option is used when the source needs to pass
information to the destination only. Intermediate routers are not permitted access to this
information.

Comparison Between IPv4 Options and IPv6 Extension Headers

Table 20.10 compares the options in IPv4 with the extension headers in IPv6.

Table 20.10 Comparison between IPv4 options and IPv6 extension headers

Comparison

1. The no-operation and end-of-option options in IPv4 are replaced by Padl and PadN
options in IPv6.

2. The record route option is not implemented in IPv6 because it was not used.

3. The timestamp option is not implemented because it was not used.

4. The source route option is called the source route extension header in IPv6.

5. The fragmentation fields in the base header section of IPv4 have moved to the fragmentation
extension header in IPv6.

6. The authentication extension header is new in IPv6.

7. The encrypted security payload extension header is new in IPv6.

20.4 TRANSITION FROM IPv4 TO IPv6
Because of the huge number of systems on the Internet, the transition from IPv4
to IPv6 cannot happen suddenly. It takes a considerable amount of time before every
system in the Internet can move from IPv4 to IPv6. The transition must be smooth to
prevent any problems between IPv4 and IPv6 systems. Three strategies have been
devised by the !ElF to help the transition (see Figure 20.18).

Figure 20.18 Three transition strategies
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Dual Stack

It is recommended that all hosts, before migrating completely to version 6, have a dual
stack of protocols. In other words, a station must run IPv4 and IPv6 simultaneously until
all the Internet uses IPv6. See Figure 20.19 for the layout of a dual-stack configuration.

Figure 20.19 Dual stack
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To determine which version to use when sending a packet to a destination, the source
host queries the DNS. If the DNS returns an IPv4 address, the source host sends an IPv4
packet. If the DNS returns an IPv6 address, the source host sends an IPv6 packet.

Tunneling

Thnneling is a strategy used when two computers using IPv6 want to communicate
with each other and the packet must pass through a region that uses IPv4. To pass
through this region, the packet must have an IPv4 address. So the IPv6 packet is encap­
sulated in an IPv4 packet when it enters the region, and it leaves its capsule when it
exits the region. It seems as if the IPv6 packet goes through a tunnel at one end and
emerges at the other end. To make it clear that the IPv4 packet is carrying an IPv6
packet as data, the protocol value is set to 41. Tunneling is shown in Figure 20.20.

Figure 20.20 Tunneling strategy
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Header Translation

Header translation is necessary when the majority of the Internet has moved to IPv6
but some systems still use IPv4. The sender wants to use IPv6, but the receiver does not
understand IPv6. Tunneling does not work in this situation because the packet must be
in the IPv4 format to be understood by the receiver. In this case, the header format must
be totally changed through header translation. The header of the IPv6 packet is con­
verted to an IPv4 header (see Figure 20.21).

Figure 20.21 Header translation strategy
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Header translation uses the mapped address to translate an IPv6 address to an IPv4
address. Table 20.11 lists some rules used in transforming an IPv6 packet header to an
IPv4 packet header.

Table 20.11 Header translation

Header Translation Procedure

1. The IPv6 mapped address is changed to an IPv4 address by extracting the rightmost 32 bits.

2. The value of the IPv6 priority field is discarded.

3. The type of service field in IPv4 is set to zero.

4. The checksum for IPv4 is calculated and inserted in the corresponding field.

5. The IPv6 flow label is ignored.

6. Compatible extension headers are converted to options and inserted in the IPv4 header.
Some may have to be dropped.

7. The length of IPv4 header is calculated and inserted into the corresponding field.

8. The total length of the IPv4 packet is calculated and inserted in the corresponding field.

20.5 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books and sites. The items in brackets [...] refer to the reference list at the end of
the text.
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Books

IPv4 is discussed in Chapter 8 of [For06], Chapter 3 of [Ste94J, Section 4.1 of [PD03],
Chapter 18 of [Sta04], and Section 5.6 of [Tan03]. IPv6 is discussed in Chapter 27 of
[For06] and [Los04].

Sites

o www.ietforg/rfc.html Information about RFCs

RFCs

A discussion of IPv4 can be found in following RFCs:

760,781,791,815,1025,1063,1071,1141,1190, 1191, 1624,2113

A discussion of IPv6 can be found in the following RFCs:

1365,1550,1678,1680,1682,1683,1686,1688,1726, 1752, 1826, 1883, 1884, 1886, 1887,
1955,2080,2373,2452,2463,2465,2466,2472,2492,2545,2590

20.6 KEY TERMS
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time to live

timestamp option

tunneling

type of service (TOS)

20.7 SUMMARY
o IPv4 is an unreliable connectionless protocol responsible for source-to-destination

delivery.

o Packets in the IPv4 layer are called datagrams. A datagram consists of a header
(20 to 60 bytes) and data. The maximum length of a datagram is 65,535 bytes.

o The MTU is the maximum number of bytes that a data link protocol can encapsulate.
MTUs vary from protocol to protocol.

o Fragmentation is the division of a datagram into smaller units to accommodate the
MTU of a data link protocol.

o The IPv4 datagram header consists of a fixed, 20-byte section and a variable options
section with a maximum of 40 bytes.

o The options section of the IPv4 header is used for network testing and debugging.

o The six IPv4 options each have a specific function. They are as follows: filler
between options for alignment purposes, padding, recording the route the datagram
takes, selection of a mandatory route by the sender, selection of certain routers that
must be visited, and recording of processing times at routers.

o IPv6, the latest version of the Internet Protocol, has a 128-bit address space, a revised
header format, new options, an allowance for extension, support for resource
allocation, and increased security measures.

o An IPv6 datagram is composed of a base header and a payload.

o Extension headers add functionality to the IPv6 datagram.

o Three strategies used to handle the transition from version 4 to version 6 are dual
stack, tunneling, and header translation.

20.8 PRACTICE SET

Review Questions

1. What is the difference between the delivery of a frame in the data link layer and the
delivery of a packet in the network layer?

2. What is the difference between connectionless and connection-oriented services?
Which type of service is provided by IPv4? Which type of service is provided by IPv6?

3. Define fragmentation and explain why the IPv4 and IPv6 protocols need to fragment
some packets. Is there any difference between the two protocols in this matter?
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4. Explain the procedure for checksum calculation and verification in the IPv4 protocol.
What part of an IPv4 packet is covered in the checksum calculation? Why? Are
options, if present, included in the calculation?

5. Explain the need for options in IPv4 and list the options mentioned in this chapter
with a brief description of each.

6. Compare and contrast the fields in the main headers of IPv4 and IPv6. Make a table
that shows the presence or absence of each field.

7. Both IPv4 and IPv6 assume that packets may have different priorities or precedences.
Explain how each protocol handles this issue.

8. Compare and contrast the options in IPv4 and the extension headers in IPv6. Make
a table that shows the presence or absence of each.

9. Explain the reason for the elimination of the checksum in the IPv6 header.

10. List three transition strategies to move from IPv4 to IPv6. Explain the difference
between tunneling and dual stack strategies during the transition period. When is
each strategy used?

Exercises

11. Which fields of the IPv4 header change from router to router?

12. Calculate the HLEN (in IPv4) value if the total length is 1200 bytes, 1176 of which
is data from the upper layer.

13. Table 20.5 lists the MTUs for many different protocols. The MTUs range from 296
to 65,535. What would be the advantages of having a large MTU? What would be
the advantages of having a small MTU?

14. Given a fragmented datagram (in IPv4) with an offset of 120, how can you determine
the first and last byte numbers?

15. Can the value of the header length in an IPv4 packet be less than 5? When is it
exactly 5?

16. The value ofHLEN in an IPv4 datagram is 7. How many option bytes are present?

17. The size of the option field of an IPv4 datagram is 20 bytes. What is the value of
HLEN? What is the value in binary?

18. The value of the total length field in an IPv4 datagram is 36, and the value of the
header length field is 5. How many bytes of data is the packet carrying?

19. An IPv4 datagram is carrying 1024 bytes of data. If there is no option information,
what is the value of the header length field? What is the value of the total length
field?

20. A host is sending 100 datagrams to another host. If the identification number of the
first datagram is 1024, what is the identification number of the last (in IPv4)?

21. An IPv4 datagram arrives with fragmentation offset of 0 and an M bit (more fragment
bit) of O. Is this a first fragment, middle fragment, or last fragment?

22. An IPv4 fragment has arrived with an offset value of 100. How many bytes of data
were originally sent by the source before the data in this fragment?
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23. An IPv4 datagram has arrived with the following information in the header (in
hexadecimal):

Ox45 00 00 54 00 03 58 50 20 06 00 00 7C 4E 03 02 B4 OE OF 02

a. Is the packet corrupted?

b. Are there any options?

c. Is the packet fragmented?

d. What is the size of the data?

e. How many more routers can the packet travel to?

f. What is the identification number of the packet?

g. What is the type of service?

24. In an IPv4 datagram, the M bit is 0, the value of HLEN is 5, the value of total
length is 200, and the offset value is 200. What is the number of the first byte and
number of the last byte in this datagram? Is this the last fragment, the first fragment,
or a middle fragment?

Research Activities

25. Find out why there are two security protocols (AH and ESP) in IPv6.


